this post was submitted on 11 Oct 2023
400 points (73.2% liked)

Fuck Cars

9660 readers
123 users here now

A place to discuss problems of car centric infrastructure or how it hurts us all. Let's explore the bad world of Cars!

Rules

1. Be CivilYou may not agree on ideas, but please do not be needlessly rude or insulting to other people in this community.

2. No hate speechDon't discriminate or disparage people on the basis of sex, gender, race, ethnicity, nationality, religion, or sexuality.

3. Don't harass peopleDon't follow people you disagree with into multiple threads or into PMs to insult, disparage, or otherwise attack them. And certainly don't doxx any non-public figures.

4. Stay on topicThis community is about cars, their externalities in society, car-dependency, and solutions to these.

5. No repostsDo not repost content that has already been posted in this community.

Moderator discretion will be used to judge reports with regard to the above rules.

Posting Guidelines

In the absence of a flair system on lemmy yet, let’s try to make it easier to scan through posts by type in here by using tags:

Recommended communities:

founded 1 year ago
MODERATORS
 
you are viewing a single comment's thread
view the rest of the comments
[–] formergijoe@lemmy.world 9 points 1 year ago

Using data I am getting from quick googles, a Tesla model S has 95 kWh of power max, with a range of 405 miles (~650 km). That gives us 4.26 miles per kWh (or 6.84 km/kWh). According to the city of LA, there are about 2.5 million cars registered to the city.

Let's assume in this perfect future, the number of cars is not increased and they have all been converted to cars that perform identical to this Model S data. Let's also assume each of these cars are required for daily work commuting, and assuming each Angelino commute the average I found of 41 miles which is about 9.6 kWh per day per car commuting or 24 million kWh total per day just commuting.

Assuming this data is correct and a solar panel can produce 2.4 kWh per day a daily commute requires 10 million solar panels operating at 100% every day. Assuming the average solar panel is 17.6 square feet, then the total area needed for solar panels to charge one car commute per day is 1 square km or 64ish city blocks.

However, if we replace all of these car commuters with a train, which we can say requires 0.05 kWh/km, that comes to 8.75 million kWh for the daily commute, or 36% of the power requirement using cars only. That doesn't even factor in the amount of infrastructure for supporting cars (roads vs rails, parking, public charge stations, mechanics, less power sources, etc).

Replacing every gas powered car with an electric powered one would reduce emissions. However, replacing car transportation with more efficient forms of transportation reduces carbon emissions even further. Again, these are spherical vehicles in a vacuum making a lot of assumptions, but I think my point stands.