this post was submitted on 06 Jan 2024
274 points (86.1% liked)
memes
10392 readers
3416 users here now
Community rules
1. Be civil
No trolling, bigotry or other insulting / annoying behaviour
2. No politics
This is non-politics community. For political memes please go to !politicalmemes@lemmy.world
3. No recent reposts
Check for reposts when posting a meme, you can only repost after 1 month
4. No bots
No bots without the express approval of the mods or the admins
5. No Spam/Ads
No advertisements or spam. This is an instance rule and the only way to live.
Sister communities
- !tenforward@lemmy.world : Star Trek memes, chat and shitposts
- !lemmyshitpost@lemmy.world : Lemmy Shitposts, anything and everything goes.
- !linuxmemes@lemmy.world : Linux themed memes
- !comicstrips@lemmy.world : for those who love comic stories.
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Alternatively for small brains like me:
Imagine you have an infinite amount of $1 bills are laid out in a line. Right next to it is a line of $100 bills.
As you go down the line, count how much money you have at any given point.
Which total is worth more?
Your example introduces the axis of time which is not in consideration when discussing infinity. You're literally removing infinity from the equation by doing that because "at any given point" by definition is not infinity. Let's say that point is 1 million bills down the line. Now you're comparing 1,000,000 x 100 vs 1,000,000 x 1, nothing to do with infinity
Imagine the line of 1s is stacked like pages in books on a shelf, but the line of 100s is placed in a row so they're only touching on the sides. You could probably fit a few hundred 1s in the space of one 100. Both lines still have infinite bills in them, but now as you go along, you're seeing a lot more 1s at a time.
That's the thing about infinities, you can squish and stretch them, and they're still infinite.