this post was submitted on 16 Nov 2024
857 points (86.8% liked)

Science Memes

11068 readers
3818 users here now

Welcome to c/science_memes @ Mander.xyz!

A place for majestic STEMLORD peacocking, as well as memes about the realities of working in a lab.



Rules

  1. Don't throw mud. Behave like an intellectual and remember the human.
  2. Keep it rooted (on topic).
  3. No spam.
  4. Infographics welcome, get schooled.

This is a science community. We use the Dawkins definition of meme.



Research Committee

Other Mander Communities

Science and Research

Biology and Life Sciences

Physical Sciences

Humanities and Social Sciences

Practical and Applied Sciences

Memes

Miscellaneous

founded 2 years ago
MODERATORS
 
you are viewing a single comment's thread
view the rest of the comments
[–] barsoap@lemm.ee 1 points 5 hours ago (1 children)

When’s that going to happen? Right after the green hydrogen revolution?

Already happening, on a small (but industrial) scale. You can buy that stuff off the shelf, but it's still on the lower end of the sigmoid. Most new installations right now will be going to Canada and Namibia, we'll be buying massive amounts of ammonia from both.

Sorry, I didn’t think someone would deny the existance of dunkelflautes. It’s currently happening in Germany.

Yes and elsewhere in Europe the wind is blowing. Differences in solar yields are seasonal (that's what those three months storage are for, according to Fraunhofer's initial plans), but reversed on the other side of the globe, and Germany would be better situated to tank differences in local wind production all by itself if e.g. Bavaria didn't hinder wind projects in their state. The total energy the sun infuses into the earth does change a bit over time, but that's negligible. In principle pretty much zero storage is needed as long as there's good enough interconnectivity.

...meanwhile, we'll probably have the first commercial fusion plant in just about the mean construction time of a fission plant.

[–] iii@mander.xyz 1 points 1 hour ago (1 children)

Already happening, on a small (but industrial) scale.

I mean, isn't that the problem with all storage technologies?

Is the goal of renewables to do 90% of the year with renewables, and 10% of the year with fossil fuel?

Hopefully one day, the last 10% is "green hydrogen", "syngas", "synpetrol"? That's how the intermittancy problem is "solved"?

[–] barsoap@lemm.ee 1 points 14 minutes ago (1 children)

In essence, yes. And we need the hydrogen/ammonia/methane/methanol/whatever anyway to do chemistry with, so we'll have to produce them in some renewable way anyway, and at scale. Using them in peaker plants is only a fraction of the total use.

Even with fusion up and running we're going to do hydrolysis. You can run a car on electricity, or domestic heating, also aluminium smelting, but not a blast furnace to reduce steel nor a chemical industry. Hydrogen, in one form or another, is the answer to all of those things. As things currently stand the market is in its infancy but the first pipelines are getting dedicated to hydrogen, the first blast furnaces made for operation with hydrogen are up and running... and the hydrogen mostly comes from fossil gas. It's a bit of a chicken and egg problem you need demand to have supply but you need supply to have demand, so kick-starting the demand side by supplying it fossil hydrogen makes a lot of economical sense, that means that the supply investments can go big and be sure that they'll have customers from day one.

[–] iii@mander.xyz 1 points 7 minutes ago

Hydrogen, in one form or another, is the answer to all of those things

No it isn't? What makes steel steel is the carbon inbetween Fe.

Green hydrogen has been promised to me my whole life. Sad to day I now understand your point of view. Natural gas wins.