this post was submitted on 06 Jan 2024
274 points (86.1% liked)
memes
10392 readers
1870 users here now
Community rules
1. Be civil
No trolling, bigotry or other insulting / annoying behaviour
2. No politics
This is non-politics community. For political memes please go to !politicalmemes@lemmy.world
3. No recent reposts
Check for reposts when posting a meme, you can only repost after 1 month
4. No bots
No bots without the express approval of the mods or the admins
5. No Spam/Ads
No advertisements or spam. This is an instance rule and the only way to live.
Sister communities
- !tenforward@lemmy.world : Star Trek memes, chat and shitposts
- !lemmyshitpost@lemmy.world : Lemmy Shitposts, anything and everything goes.
- !linuxmemes@lemmy.world : Linux themed memes
- !comicstrips@lemmy.world : for those who love comic stories.
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Theoretically, yes. Functionally, no. When you go to pay for something with your infinite bills, would you rather pay with N number of 100 dollar bills or get your wheelbarrow to pay with 100N one dollar bills? The pile may be infinite, but your ability to access it is finite. Ergo, the "denser" pile is worth more.
Yeah, this is what it comes down to. In calculus, infinity doesn't exist, you just approach it when you take the limit. You'll approach it "quicker" with the 100 dollar bills, so to speak
You're thinking of a different calculus problem in this case we are comparing the growth rate of
100*\infty vs \infty
. In calculus, you cannot accelerate the growth of \infty. If you put\infty / \infty
your answer will beundefined
(you can double check with Wolfram), similarly, if you put100*\infty / \infty
, you will also getundefined