this post was submitted on 27 Jun 2024
818 points (95.2% liked)

Science Memes

10970 readers
2081 users here now

Welcome to c/science_memes @ Mander.xyz!

A place for majestic STEMLORD peacocking, as well as memes about the realities of working in a lab.



Rules

  1. Don't throw mud. Behave like an intellectual and remember the human.
  2. Keep it rooted (on topic).
  3. No spam.
  4. Infographics welcome, get schooled.

This is a science community. We use the Dawkins definition of meme.



Research Committee

Other Mander Communities

Science and Research

Biology and Life Sciences

Physical Sciences

Humanities and Social Sciences

Practical and Applied Sciences

Memes

Miscellaneous

founded 2 years ago
MODERATORS
 
you are viewing a single comment's thread
view the rest of the comments
[–] Tomorrow_Farewell@hexbear.net 1 points 4 months ago (1 children)

Ok. In mathematical notation/context, it is more specific, as I outlined.

It is not. You will routinely find it used in cases where your explanation does not apply, such as to denote the contents of a matrix.

Furthermore, we can define real numbers without defining series. In such contexts, your explanation also doesn't work until we do defines series of rational numbers.

Ok. Never said 0.999... is not a real number

In which case it cannot converge to anything on account of it not being a function or any other things that can be said to converge.

because solving the equation it truly represents, a geometric series, results in 1

A series is not an equation.

This solution is obtained using what is called the convergence theorem

What theorem? I have never heard of 'the convergence theorem'.

0.424242... solved via the convergence theorem simply results in itself

What do you mean by 'solving' a real number?

0.999... does not again result in 0.999..., but results to 1

In what way does it not 'result in 0.999...' when 0.999... = 1?

You seem to not understand what decimals are, because while decimals (which are representations of real numbers) '0.999...' and '1' are different, they both refer to the same real number. We can use expressions '0.999...' and '1' interchangeably in the context of base 10. In other bases, we can easily also find similar pairs of digital representations that refer to the same numbers.

I meant what I said: "know patterns of repeating numbers after the decimal point."

What we have after the decimal point are digits. OTOH, sure, we can treat them as numbers, but still, this is not a common terminology. Furthermore, 'repeating number' is not a term in any sort of commonly-used terminology in this context.

The actual term that you were looking for is 'repeating decimal'.

Perhaps I should have also clarified known finite patterns to further emphasize the difference between rational and irrational numbers

No irrational number can be represented by a repeating decimal.

[–] sp3tr4l@lemmy.zip 1 points 4 months ago (1 children)

https://www2.kenyon.edu/Depts/Math/Paquin/GeomSeriesCalcB.pdf

Here's a standard introduction to the concept of the Convergence/Divergence Theorem of Geometric Series, starts on page 2.

Its quite common for this to be referred to as the convergence test or rule or theorem by teachers and TA's.

[–] Tomorrow_Farewell@hexbear.net 1 points 4 months ago* (last edited 4 months ago)

Now, ask yourself this question, 'is 0.999..., or any real number for that matter, a series?'. The answer to that question is 'no'.

You seem to be extremely confused, and think that the terms 'series' and 'the sum of a series' mean the same thing. They do not. 0.999... is the sum of the series 9/10+9/100+9/1000+..., and not a series itself.

EDIT: Also, the author does abuse the notations somewhat when she says '1+1/2+1/4 = 2' is a geometric series, as the geometric series 1+1/2+1/4+... does not equal 2, because a series is either just a formal sum, a sequence of its terms, or, in German math traditions, a sequence of its partial sums. It is the sum of the series 1+1/2+1/4+... that is equal to 2. The confusion is made worse by the fact that sums of series and the series themselves are often denoted in the same way. However, again, those are different things.
Would you mind providing a snippet with the definition of the term 'series' that she provides?

EDIT 2: Notably, that document has no theorem that is called 'convergence theorem' or 'the convergence theorem'. The only theorem that is present there is the one on convergence and divergence of geometric series.