this post was submitted on 13 Jul 2024
114 points (98.3% liked)

Programming

17416 readers
39 users here now

Welcome to the main community in programming.dev! Feel free to post anything relating to programming here!

Cross posting is strongly encouraged in the instance. If you feel your post or another person's post makes sense in another community cross post into it.

Hope you enjoy the instance!

Rules

Rules

  • Follow the programming.dev instance rules
  • Keep content related to programming in some way
  • If you're posting long videos try to add in some form of tldr for those who don't want to watch videos

Wormhole

Follow the wormhole through a path of communities !webdev@programming.dev



founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
[–] FizzyOrange@programming.dev 3 points 4 months ago (1 children)

Python is written in C too, what’s your point?

The point is that eliminating the GIL mainly benefits pure Python code. Numpy is already multithreaded.

I think you may have forgotten what we're talking about.

the new python version was less than 50 lines and was developed in an afternoon, the c++ version was closing in on 1000 lines over 6 files.

That's a bit suss too tbh. Did the C++ version use an existing library like Eigen too or did they implement everything from scratch?

[–] Womble@lemmy.world 1 points 4 months ago* (last edited 4 months ago)

I was responding to your general statement that python is slow and so there is no point in making it faster, I agree that removing the GIL wont do much to improve the execution speed for programs making heavy use of numpy or things calling outside it.

That’s a bit suss too tbh. Did the C++ version use an existing library like Eigen too or did they implement everything from scratch?

It was written entirely from scratch which is kind of my point, a well writen python program can outperform a naive c implementation and is vastly simpler to create.

If you have the expertise and are willing to put in the effort you likely can squeze that extra bit of performance out by dropping to a lower level language, but for certain workloads you can get good performance out of python if you know what you are doing so calling it extremely slow and saying you have to move to another language if you care about performance is missleading.