'252 km (157 miles) range' to save others the same skimming I did
Technology
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related content.
- Be excellent to each another!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, to ask if your bot can be added please contact us.
- Check for duplicates before posting, duplicates may be removed
Approved Bots
Not bad for that battery's first outing
Perfect for my needs. But I doubt it will ever be for sale here in the U.S.
The key is that with the right use case, it frees up lithium to be used where only it is suitable.
(for my needs I'd be fine with sodium...)
I can see that. My point is that the only electric car that has that range in the U.S. is the Leaf, which goes 168 miles on the smaller battery. I don't need an electric car that goes that many miles between charges. I'd be fine with 90. I'd probably be fine with less than 90. We have a second car if we ever want to leave town. I'd ditch my hybrid and get a cheaper electric car that didn't have a huge range, but it isn't even on offer.
Dude get a used Leaf or Bolt. There is a $4k tax credit or direct price reduction for used now.
For sure! I think we're going to have to move away from a one-size fits all car design. For general city use, I use a Chevy Bolt, but for longer (infrequent) runs, I'm still stuck with ICE (I'd use a hybrid if I had one). In Canada, the range really does go down in the winter. (and Canada has not taken charging infrastructure very seriously - mandatory for adoption)
Anyway you look at it, these are very, very positive developments.
I've found people vastly overstated how much range they need. 99% of usage is in the city between home and somewhere else. 250km is perfect if the price is right.
For daily use, sure - but it completely excludes itself as an option for road trips in the US and parts of Canada. There's a stretch of interstate road near me with nearly a 100 mile gap between service stations.
I know that this isn't the purpose of this battery, but it's a valid reason why a lot of people might be hesitant to buy one. Many people can't afford multiple vehicles for different purposes. You have the car you drive to work with, and if you happen to go on a trip you just use the same thing.
Maybe 99% of use occurs within constraints that this battery can handle, but if you can only afford one vehicle, then this is still a pretty suboptimal option. That being said... it could still be cheap enough to not matter. I didn't see any mention of price in that article.
If 99% is covered by this then cover your last 1% by renting a vehicle has that ever occurred to you ?
Maybe we have to settle for suboptimal solutions from time to time to save the planet?
A solution to this would be an extra expansion battery that you could buy or rent as an add-on only when needed.
...or rent a vehicle with the fuel savings from driving your EV most of the year, and skip putting a couple thousand km on your car over a long weekend.
If we're going all in with expansion packs we should add a rumble pack as well 😏
Id like to add that there are different versions of the car, with the long range version being 302km range, and the battery mass to energy ratio is actually average compared to other batteries.
Curious how it'll perform in real world conditions. Sodium batteries are supposed to have much better charging times and don't degrade the way lithium batteries do, both of which would be huge. Fingers crossed they live up to expectations.
(Also obligatory "expand and improve public transit damnit!")
As some used to "gotchas" and things aren't free, I'm wondering what kind of shortcomings[1] these batteries have that others do not.
[1] for example acid batteries can push a lot of power, but they are heavy and contain lead and well... acid. The nickel cadmium doesn't contain lead and acid, but has memory so you should follow discharge them before charging again. They are lighter, but still not light. Lithium ion are light, don't have memory, but can explode, also lose life if they are kept fully discharged or charged for long periods of time. They also slowly discharge when not in use, mainly due to protective circuit needing electricity to run.
Their only downside is having a little less energy density than lithium ion ones. You need a larger battery for the same capacity basically. Everything else is a positive - they are even non-flammable and the materials to make them are abundant and easy to obtain.
Hold up, they solved the energy sink issue with the salt batteries? That's wicked. There were physicists arguing with each other that the power you put in couldn't be gotten back out.
We've only got a stated range out of this (252km/157mi) but there are a lot of factors where this could do well. Sodium batteries should be cheaper, so it'd be great if that translated to the final sale price. Depending on charge times and where you live, this could be a perfectly practical vehicle. If it doesn't degrade like lithium batteries, then that'd be even better. Might make for a great secondary vehicle (or everyday driver, depending).
I'm expecting to see dual battery EVs in the not too distant future. A Sodium battery for the primary that gets the most charges and discharges which can be easy and cheaper to replace. Beside that a Lithium battery which would only be drawn from after the Sodium battery was exhausted. This way if you're doing shallow discharges for your "around town" driving then charging at night, and deep discharges for longer road trips where the energy density of Lithium shines.
Lithium batteries dont like being stored fully charged they will degrade over time.
I'm still dreaming of seeing EVs with flexible battery space, which users can fill according to their needs.
Like a car comes with space for 10x 10 kWh slots.
If 20 kWh serve your usual needs, the other spaces remain empty.
And if you plan longer trips and don't want to recharge each 100 miles, you put in additional batteries. Those batteries don't need to be owned, but can be rented.
Ideally there are lots of battery rental stations, where you can get charged batteries and instead of recharging the batteries in the EV, the rent'n'swap stations recharge them.
During (EV) wise low use times, these stations can provide a buffer to the energy grid.
...one can dream...
Question to anyone who might know more: would sodium based batteries be better than lithium ones for the environment, in terms of recycling or disposing of it?
In case they are indeed better, would they be better because it's better to use less lithium in general (so if you use more sodium based ones, you use less lithium) or would they be also better because their own disposal is "nicer" (as in less toxic) for the environment?
Well, Sodium is the 6th most abundant element on Earth, so there's a lot more of it and the extraction process is probably far more environmentally friendly.
Since Sodium batteries are so new I don't think we have data on the toxicity, disposal or recycling avenues yet.
They're actually old tech. They just could never match lithium.
They'll shine as standing storage more so than mobile applications. Home storage will benefit greatly from their improvements
I don't find the source anymore, but i saw a lifetime analysis about sodium ion batteries. Overall they are slighly worse than lithium ion due to higher energy input required during fabrication, despite better mineral availability.
The most common Na-ion batteries use Prussian Blue.
My doctor says I can't buy it. Is there a low sodium version?
Any new battery technology news needs to be taken with a grain of salt. They are highly likely over-hyped and the actually realized products will have more problems than the current established tech initially.
Any new battery technology news needs to be taken with grain of salt.
Well yeah, it's sodium.
too easy...
Normally you're right. It seems like every day there is a new revolutionary battery tech with no real estimate when it'll ever be in use. But in this case, according to the article, deliveries will start next month which means they're already in production.
Unfortunately the page is behind the yahoo consent tracker and my DNS resolver by precaution refused to connect.