"1.1) Grupos de Simetria
Na teoria dos grupos o grupo de simetria é o grupo de todas as transformações sob as quais um objeto é invariável, dotado da operação de composição. Essa transformação “move” o objeto, mas preserva toda a sua estrutura relevante. Uma notação frequente para o grupo de simetria de um objeto X é G(X). Para um objeto em um espaço métrico, suas simetrias formam um subgrupo do grupo isometria do espaço ambiente.
Para a simetria de objetos físicos, consideramos sua composição física como parte do modelo. (Um modelo ou padrão pode ser especificado formalmente, por exemplo, como um campo escalar, como um campo vetorial ou como uma função mais geral no objeto.). O grupo de simetria G(X) consiste nas isometrias que mapeiam X . Dizemos que X é invariante sob esse mapeamento, e o mapeamento é uma simetria de X.[5] "