this post was submitted on 10 Apr 2024
98 points (100.0% liked)
Technology
37712 readers
254 users here now
A nice place to discuss rumors, happenings, innovations, and challenges in the technology sphere. We also welcome discussions on the intersections of technology and society. If it’s technological news or discussion of technology, it probably belongs here.
Remember the overriding ethos on Beehaw: Be(e) Nice. Each user you encounter here is a person, and should be treated with kindness (even if they’re wrong, or use a Linux distro you don’t like). Personal attacks will not be tolerated.
Subcommunities on Beehaw:
This community's icon was made by Aaron Schneider, under the CC-BY-NC-SA 4.0 license.
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
It's really hard to know how this will play out. The models only have to improve a bit at this point to be reliably better than humans, as which time it probably makes sense to replace humans. It seems they will probably still hallucinate but do it little enough that it's still a net gain to use them. Compute power needed to run them will surely come down.
I'm as skeptical as the next guy, but I do think they will have uses, especially in examples like radiology which he he uses as a negative case. However I'm pretty sure it will eventually be able to do the initial screening to find the 95% of cases with nothing at a rate similar to existing medical diagnostic testing and then return the other 5% back to a human to review and decide further treatment. Based on my experience with speech language models, I'm pretty sure you'd be able to tweak the models to produce mostly false positives rather than false negatives and then run it through further layers of review afterwards.
I mean, for some things, slightly worse at a fraction of a percent of the price is also game-changing.