Ask Science
Ask a science question, get a science answer.
Community Rules
Rule 1: Be respectful and inclusive.
Treat others with respect, and maintain a positive atmosphere.
Rule 2: No harassment, hate speech, bigotry, or trolling.
Avoid any form of harassment, hate speech, bigotry, or offensive behavior.
Rule 3: Engage in constructive discussions.
Contribute to meaningful and constructive discussions that enhance scientific understanding.
Rule 4: No AI-generated answers.
Strictly prohibit the use of AI-generated answers. Providing answers generated by AI systems is not allowed and may result in a ban.
Rule 5: Follow guidelines and moderators' instructions.
Adhere to community guidelines and comply with instructions given by moderators.
Rule 6: Use appropriate language and tone.
Communicate using suitable language and maintain a professional and respectful tone.
Rule 7: Report violations.
Report any violations of the community rules to the moderators for appropriate action.
Rule 8: Foster a continuous learning environment.
Encourage a continuous learning environment where members can share knowledge and engage in scientific discussions.
Rule 9: Source required for answers.
Provide credible sources for answers. Failure to include a source may result in the removal of the answer to ensure information reliability.
By adhering to these rules, we create a welcoming and informative environment where science-related questions receive accurate and credible answers. Thank you for your cooperation in making the Ask Science community a valuable resource for scientific knowledge.
We retain the discretion to modify the rules as we deem necessary.
view the rest of the comments
A laymans opinion on the challenge: Waves lose energy, and the exact placement of antennas will matter. I don't know what the mechanism is called, but we don't place wind turbines right next to each other. That is afaik because each turbine takes some of the energy out of a larger chunk of the wind-wave in an 'bubble' around it, so we place them with optimal distance according to efficiency of that mechanism. If I'm right the effect will probably be minimal. Anyway, just a stab at an interesting thought..
Yep. It's called near field and far field in radio. In the far field you can approximate it as a beam from the transmitter, while in near field it's magnets and things can absolutely interact. You never want to put up a stand-alone antenna in the near field of something conductive. Those big tower antennas actually incorporate the ground as a critical part of their design, because of that and the non-negligible conductivity of ground water.